What has Toxoplasma in Sea Otters Taught Us about the Risks and the One Health Approach to Global Public Health

Clinician Outreach and Communication Activity (COCA) Webinar
Tuesday, February 6, 2018
At the end of this webinar, the participants will be able to:

• Describe the life cycle of *Toxoplasma gondii* and the importance of the oocyst in transmission.

• Explain the different mechanisms for oocyst accumulation in the ocean where sea otters become infected.

• List possible steps to reduce pathogen pollution in coastal habitats.

• Define a keystone species and discuss what we have learned about ecosystem health and human health risks from studying sea otter health.
Continuing Education Disclaimer

CDC, our planners, presenters, and their spouses/partners wish to disclose they have no financial interests or other relationships with the manufacturers of commercial products, suppliers of commercial services, or commercial supporters.

Planners have reviewed content to ensure there is no bias.
To Ask a Question

- **Using the Webinar System**
 - Select the “Questions” tab on the webinar screen
 - Type your question

OR

- Click on the “raise your hand” icon on the webinar screen
- Ask your question
Today’s Presenter

Heather Fritz, DVM, PhD
University of California, Davis
What has Toxoplasma in sea otters taught us about risks and the One Health approach to Global Public Health

Heather Fritz DVM, PhD
University of California, Davis
Global Health
Area of study, research and practice with a priority on improving health and achieving health equity for people worldwide.

Transcend national borders
Protect against global threats
One Health

An interdisciplinary approach to solving specific, complex problems that arise at the interface of animals, humans and the environment.
SOUTHERN SEA OTTER
(Enhydra lutris nereis)
The California Southern Sea Otter

- Federally-listed threatened species
- Found only along the central coast of California
- Total population ~3,000 animals
Otters are a Keystone Species
Importance of sea otters to coastal ecosystem

• Kelp forests protect coast from erosion and provide habitat

• Sea urchins destroy kelp

• Sea otters prey on sea urchin
Toxoplasma gondii

How is a terrestrial pathogen causing such profound disease in marine mammals?

What is killing California sea otters?

Most important: Infectious diseases

→ protozoal parasites

Seroprevalence of *T. gondii*:

~38% of 257 live otters

~52% of 305 dead otters

Based on IFAT - Miller et al 2002
California sea otters have been dying in alarming numbers for several years, raising concerns about the future of the species. The deaths have been blamed on pollution, disease, and human interference. A recent study suggests freshwater runoff containing *Toxoplasma gondii* may be partly to blame.

Could cat waste be killing sea otters?

A parasite carried by cats is killing off sea otters, a veterinary specialist has told a major US science conference.

The Californian researcher has called for owners to keep their cats indoors.

Cat faeces carrying *Toxoplasma* parasites wash into US waterways and then into the sea where they can infect otters, causing brain disease.

The parasite is familiar to medical researchers, as it can damage human foetuses when expectant mothers become infected while changing cat litter.

The most likely source of infection for sea otters is their cat waste.
Protozoal parasites important cause of death in sea otters

Toxoplasma gondii
- Definitive host = cat

Sarcocystis neurona
- Definitive host = Opossum

Terrestrial hosts. Terrestrial pathogens.
Toxoplasma gondii

Discovered in 1908 in the North African ‘gundi’ rodent

Toxo = ‘bow’ plasma = ‘form’

- Protozoan
- Apicomplexa
- Obligate intracellular parasite
 - Interacts with the host via secreted proteins
Toxoplasma gondii

Broad host range

Capable of infecting virtually any nucleated cell

Able to cross several anatomical barriers

Only one known definitive host
Three routes of infection

1. Ingestion of sporulated oocysts
2. Ingestion of tissue cysts in undercooked meat
3. Transplacental transmission

Sporozoites Bradyzoites Tachyzoites
Lifecycle

Asexual expansion = amazingly efficient

‘Female’ macrogamete

‘Male’ microgamete

Diploid zygote

Unsporulated oocyst = hundreds of millions!
Sporulation occurs in the environment
• 2 sporocysts
• 4 sporozoites in each sporocyst

Intermediate hosts
Oocysts are extremely environmentally-resistant
Oocysts are tough!

- Chlorine
- Ozone
- Ultraviolet Radiation
- Quaternary ammonium compounds
- Ethanol
- 10% formalin
- 2% Sulfuric acid (H$_2$SO$_4$)
One Health Approach:
How is a terrestrial pathogen causing such profound disease in a marine mammal?

1. Develop a model for the transport of oocysts from land to sea.
2. How are oocysts encountered by otters in ocean.
3. What structures/factors are responsible for the remarkable environmental resistance of the oocyst?
4. How can we better identify where oocysts accumulate in the coastal environment to serve as a source of infection to otters?
Modeling the transport of *Toxoplasma* oocysts from land to sea

Liz VanWormer
DVM, PhD
Oocysts per cell = number of cats * infection prevalence * oocysts shed
Differences in infection and shedding
Both domestic and wild felids contribute *Toxoplasma* oocysts to terrestrial coastal environments.
Modeling oocyst transport in freshwater runoff
Figure 2: Spatial distribution of *Toxoplasma gondii* oocysts carried to the ocean via freshwater runoff (light yellow to red shading).
How do coastal development and precipitation influence pathogen flow from terrestrial to aquatic environments?
Land use change has a major impact on increased oocyst delivery to the ocean.
Coastal development and precipitation drive pathogen flow from land to sea: evidence from a *Toxoplasma gondii* and felid host system

doi:10.1038/srep29252

Received: 11 March 2016
Accepted: 14 June 2016
Published online: 26 July 2016

Download Citation

Ecological epidemiology
Infectious diseases
How are oocysts encountered by otters in the ocean

Karen Shapiro
DVM, MPVM, PhD
The puzzle: Toxoplasmosis in California sea otters

It’s a big ocean out there...

How can so many otters become infected with a terrestrial parasite?
Wetlands and Water Quality

- Wetland water effluents have reduced contaminants

- Physical processes
 - Sedimentation
 - Adsorption and straining

- Biological processes
 - Flora and fauna
 - Metabolism and predation

↓ Pesticides
↓ Heavy metals
↓ Pathogens
Effect of Estuarine Wetland Degradation on Transport of *Toxoplasma gondii* Surrogates from Land to Sea

Karen Shapiro, Patricia A. Conrad, Jonna A. K. Mazet, Wesley W. Wallender, Woutrina A. Miller, and John L. Largier
A mechanism for pathogen concentration in the ocean: marine snow

- Clumps of organic and inorganic material
- Snow tends to sink – accumulation zones may determine risk
- Food for invertebrates = entry into marine food webs
Where, when and how does marine snow form?

• Water salinity, currents, particle size and...
 • Transparent Exopolymer Particles (TEP) - Invisible, sticky, gel-like particles – the glue matrix of snow
 • Produced by phytoplankton, cyanobacteria, and...kelp

Hypothesis:
Association of *T. gondii* oocysts with marine snow will increase as a function of TEP
Aggregation in TEP-spiked seawater

Objective: Test for the association of *T. gondii* with marine snow in seawater spiked with increasing concentrations of alginic acid => TEP produced by kelp

Findings: Increased concentrations of TEP typically present in sea otter habitat enhance the association of *T. gondii* oocysts with marine snow
Unraveling the puzzle – Beyond snow

- Many invertebrate species that serve as prey for otters eat snow...
- But only snails identified as a risk factor for sea otter exposure to *T. gondii*
 - 12 X odds of *T. gondii* infection
 - Turban snails are kelp grazers
Association of *T. gondii* with kelp

Objective: Can *T. gondii* oocyst surrogates adhere to kelp surfaces?

Findings: Up to 30% of *T. gondii* surrogates attach to kelp blades due to TEP coating on kelp.
From kelp to otters – The snail connection

• **Objective:** Can marine snails serve as mechanical hosts for *T. gondii*?

• **Findings:**
 • Retention of oocysts up to 11 days
 • Concentration 2-3 orders of magnitude greater than seawater
Conclusion: Snails facilitate *T. gondii* exposure to otters

- Prolong exposure period
- Bio concentrator
Unraveling the puzzle

How can a land parasite infect so many otters?

T. gondii oocysts can concentrate in coastal ecosystems through two mechanisms:

1) Enrichment in marine snow

2) Association with kelp surfaces

Snails as mechanical hosts

Snail-specializing otters at greater odds of infection
Terrestrial to Marine System
Oocyst Transport

Shapiro et al 2014
Questions

1. What structures/factors are responsible for the remarkable environmental resistance of the oocyst?

Hypothesis: Proteins present in one or both layers of the oocyst wall confer environmental resistance.

2. Where do oocysts accumulate in the environment to serve as a source of infection to humans and animals?

Hypothesis: Immunomagnetic separation can be used to concentrate Toxoplasma oocysts in water to identify sources of oocyst accumulation.
Oocyst wall formation

- WFB I – Outer layer
- WFB II – Inner layer

Bleach strips the outer layer of the oocyst wall
Approach

Microarray

Day 0
Unsporulated

Day 4
Mid sporulation

Day 10
Sporulated

Compare same strain (M4):

in vitro tachyzoites

in vivo bradyzoite cysts

Mass spectrometry

Day 10 oocysts
± bleach treatment

Walls

Sporocysts (sporozoites)
Results: Top 15 oocyst-specific transcripts

<table>
<thead>
<tr>
<th>Product</th>
<th>Fold-change d10 vs. Tz</th>
<th>Fold-change d10 vs. Bz</th>
<th>Proteomic Oo</th>
<th>Proteomic Tz</th>
</tr>
</thead>
<tbody>
<tr>
<td>hypothetical protein</td>
<td>111.1</td>
<td>103.3</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>hypothetical protein (TyRP 6.2%)</td>
<td>90.9</td>
<td>84.6</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>hypothetical protein (TyRP 5.6%)</td>
<td>76.9</td>
<td>69.7</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>hypothetical protein</td>
<td>76.9</td>
<td>63.8</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>late embryogenesis abundant domain-containing protein (TgERP)</td>
<td>71.4</td>
<td>55.4</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>late embryogenesis abundant domain-containing protein</td>
<td>66.7</td>
<td>60.0</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>hypothetical protein (TyRP 15.5%)</td>
<td>66.7</td>
<td>77.6</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>hypothetical protein</td>
<td>52.6</td>
<td>51.7</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>hypothetical protein</td>
<td>58.8</td>
<td>48.0</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>hypothetical protein, conserved</td>
<td>55.6</td>
<td>47.5</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>SRS28 (SporoSAG)</td>
<td>55.6</td>
<td>63.2</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>hypothetical protein</td>
<td>52.6</td>
<td>43.9</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>glutaredoxin, putative</td>
<td>62.5</td>
<td>45.7</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>hypothetical protein (TyRP 5.5%)</td>
<td>26.3</td>
<td>51.2</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>hypothetical protein (TyRP 13.5%)</td>
<td>41.7</td>
<td>50.7</td>
<td>Y</td>
<td>N</td>
</tr>
</tbody>
</table>

Tyrosine rich protein (TyRP)
Tyrosine-rich proteins are abundantly expressed in oocysts.

Table: Mass Spectrometry Spectral Counts

<table>
<thead>
<tr>
<th>ID</th>
<th>Experiment One</th>
<th>Experiment Two</th>
<th>Not Treated</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Not Treated</td>
<td>Bleach Treated</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Walls</td>
<td>Walls</td>
<td>Walls</td>
</tr>
<tr>
<td></td>
<td>Sp</td>
<td>Sp</td>
<td>Sp</td>
</tr>
<tr>
<td>TyRP1</td>
<td>27</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>TyRP2</td>
<td>13</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>TyRP3</td>
<td>9</td>
<td>10</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>70</td>
<td>47</td>
</tr>
<tr>
<td>TyRP4</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>TyRP5</td>
<td>12</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>13</td>
<td>31</td>
</tr>
<tr>
<td>TyRP6</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>
Further investigation of a tyrosine-rich protein

Oocyst walls are autofluorescent

Oocyst walls believed to be composed of tyrosine cross-linked proteins

Dityrosine:
- Autofluorescence
- Sclerotization (hardening)
 - Sea urchin eggs
 - Insect resilin
 - Yeast cell walls
 - Coccidian oocysts
First identification of a tyrosine-rich protein in the oocyst wall

Pre-immune serum

Immune serum
And also in the in macrogamete!

TyRP1 localizes to the macrogametes – role in oocyst wall formation?

David Ferguson
University of Oxford
2. Where do oocysts accumulate in the environment to serve as a source of infection to humans and animals?

Hypothesis: Immunomagnetic separation can be used to concentrate Toxoplasma oocysts in water to identify sources of oocyst accumulation.
Oocyst detection in water

EPA-Approved method to test water for Cryptosporidium and Giardia: Immunomagnetic Separation and Immunofluorescence Assay

1. Develop mAb(s) to oocyst wall

1. Couple mAb to paramagnetic beads

2. Co-incubate mAb-coupled beads with concentrated water sample containing oocysts

3. Retain beads + oocysts on magnet

4. Elute oocysts off of beads

5. Detect oocysts by DFA

[Images of DAPI, Ms-α-oocyst, and Oocysts + beads]
Acknowledgements

UC Davis
Pat Conrad
Conrad Lab
Peter Barry
Division of Biostatistics/SOM

Stanford University
John Boothroyd
Kerry Buchholz
Paul Bowyer
Matthew Bogyo

University of South Florida
Michael White

University of Liverpool
Jonathan Wastling
Dong Xia

Oxford University
David Ferguson

Funding:
• NIH - KO1 1K01RR031487
• NIH - EuPathDB (Boothroyd)
• CA Ocean Protection Council
• NIH - T32-RR07038

ToxoDB
David Roos
Omar Harb
Brian Brunk
Brian Gregory
What we’ve learned

Studies are more powerful when we integrate information across disciplines

ecosystem-level studies + population health and laboratory studies = Tackle complex problems
Sea otters are sentinels of environmental contamination.

“pathogen pollution”
One Health Approach

Human

Ecosystem

Domestic Animals

Wildlife
Thank You

Funding: NSF EID, NOAA OHHI, CA Sea grant

Our team:
UCD Veterinary Medicine
Patricia Conrad, Jonna Mazet, Tim Carpenter, Colin Krusor, Terra Berardi, Beatriz Aguilar, Woutrina Miller, Ann Melli, Andrea Packham, Heather Fritz, Aiko Adell

UCD Bodega Marine Laboratory
John Largier, David Dunn, Matt Robart

UCD Environmental Engineering
Stefan Wuertz, Alexander Schriewer

UCD Hydrology; University of Montana Hydrology
Wes Wallender, Purnendu Singh; Marco Maneta

UCSC Marine Sciences
Mary Silver, Tim Tinker, Fernanda Mazzillo, Alexis Walker, Joe Tomoleoni, Ben Weitzman, Zach Randell
To Ask a Question

- **Using the Webinar System**
 - Select the “Questions” tab on the webinar screen
 - Type your question

OR

- Click on the “raise your hand” icon on the webinar screen
- Ask your question
Continuing Education for COCA Calls

All continuing education (CME, CNE, CEU, CECH, ACPE, CPH, and AAVSB/RACE) for COCA Calls are issued online through the CDC Training & Continuing Education Online system (http://www.cdc.gov/TCEOnline/).

Those who participated in today's COCA Call and who wish to receive continuing education should complete the online evaluation by March 8, 2018 with the course code WC2922. Those who will participate in the on demand activity and wish to receive continuing education should complete the online evaluation between March 9, 2018 and March 9, 2020 will use course code WD2922.

Continuing education certificates can be printed immediately upon completion of your online evaluation. A cumulative transcript of all CDC/ATSDR CE’s obtained through the CDC Training & Continuing Education Online System will be maintained for each user.
Join the COCA Mailing List

Receive information about:
• Upcoming COCA Calls
• Health Alert Network notices
• CDC public health activations
• Emerging health threats
• Emergency preparedness and response conferences and training opportunities

http://emergency.cdc.gov/coca