Emerging and Exotic Diseases of Food Animals Threaten Global Food Security

Clinician Outreach and Communication Activity (COCA) Webinar
May 28, 2015
Accrediting Statements

CME: The Centers for Disease Control and Prevention is accredited by the Accreditation Council for Continuing Medical Education (ACCME®) to provide continuing medical education for physicians. The Centers for Disease Control and Prevention designates this live activity for a maximum of 1.0 AMA PRA Category 1 Credits™. Physicians should only claim credit commensurate with the extent of their participation in the activity.

CNE: The Centers for Disease Control and Prevention is accredited as a provider of Continuing Nursing Education by the American Nurses Credentialing Center’s Commission on Accreditation. This activity provides 1.0 contact hours.

IACET CEU: The CDC has been approved as an Authorized Provider by the International Association for Continuing Education and Training (IACET), 1760 Old Meadow Road, Suite 500, McLean, VA 22102. The CDC is authorized by IACET to offer 0.1 ANSI/IACET CEU’s for this program.

CECH: Sponsored by the Centers for Disease Control and Prevention, a designated provider of continuing education contact hours (CECH) in health education by the National Commission for Health Education Credentialing, Inc. This program is designated for Certified Health Education Specialists (CHES) and/or Master Certified Health Education Specialists (MCHES) to receive up to 1.0 total Category I continuing education contact hours. Maximum advanced level continuing education contact hours available are 0. CDC provider number GA0082.

CPE: The Centers for Disease Control and Prevention is accredited by the Accreditation Council for Pharmacy Education as a provider of continuing pharmacy education. This program is a designated event for pharmacists to receive 0.1 CEUs in pharmacy education. The Universal Activity Number is 0387-0000-15-101-L04-P and enduring 0387-0000-15-101-H04-P. This program is knowledge based.

AAVSB/RACE: This program was reviewed and approved by the AAVSB RACE program for 1.2 hours of continuing education in jurisdictions which recognize AAVSB RACE approval. Please contact the AAVSB RACE program if you have any comments/concerns regarding this program’s validity or relevancy to the veterinary profession.
Continuing Education Disclaimer

CDC, our planners, presenters, and their spouses/partners Wish to disclose they have no financial interests or other relationships with the manufacturers of commercial products, suppliers of commercial services, or commercial supporters. Planners have reviewed content to ensure there is no bias. This presentation will not include any discussion of the unlabeled use of a product or a product under investigational use.
Objectives

At the conclusion of this session, the participant will be able to:

- Review recent examples of emerging diseases of food animals
- Discuss reasons for emergence and dissemination of diseases of food animals
- Describe challenges for control of zoonotic and non-zoonotic food animal diseases
- Suggest infrastructure changes needed to improve prevention and control of food animal diseases
TODAY’S PRESENTER

James A. Roth, PhD, DVM, DACVM
Clarence Hartley Covault Distinguished Professor – Iowa State University
Director, Center for Food Security and Public Health
Executive Director, Institute for International Cooperation in Animal Biologics
Emerging and Exotic Diseases of Food Animals Threaten Global Food Security

James A. Roth, DVM, PhD
Center for Food Security and Public Health
College of Veterinary Medicine
Iowa State University

The findings and conclusions in this presentation are those of the author(s) and do not necessarily represent the views of the Centers for Disease Control and Prevention/the Agency for Toxic Substances and Disease Registry
Newly Emergent Zoonotic Diseases Since 1980

<table>
<thead>
<tr>
<th>Year</th>
<th>Disease Description</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980</td>
<td>Human Immunodeficiency Virus/ Acquired Immune Deficiency Syndrome (HIV/AIDS), United States</td>
<td></td>
</tr>
<tr>
<td>1982</td>
<td>E. coli O157:H7 Lyme disease (Borrelia burgdorferi) etiologic agent discovered</td>
<td></td>
</tr>
<tr>
<td>1983</td>
<td>Bartonella henselae (causative agent for cat scratch disease)</td>
<td></td>
</tr>
<tr>
<td>1986</td>
<td>Bovine Spongiform Encephalopathy (mad cow disease) – United Kingdom</td>
<td></td>
</tr>
<tr>
<td>1989</td>
<td>Ebol-A-Reston virus – monkeys imported from Philippines to United States</td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>Hantavirus (Sin Nombre virus), Four Corners, United States</td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>Hendra virus, Australia</td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>Variant Creutzfeldt-Jakob Disease (vCJD), United Kingdom</td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>Avian Influenza (H5N1) in humans, Hong Kong</td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>Nipah Virus, Malaysia</td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>West Nile virus, United States</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>Monkeypox, United States</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Severe Acute Respiratory Syndrome (SARS), spreads globally</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bovine Spongiform Encephalopathy, United States</td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>Severe Acute Respiratory Syndrome (SARS), China</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>Pandemic Influenza A (H1N1), globally</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>Avian Influenza H5N1, Europe and Africa</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>Avian Influenza (H5N1), East Asia, Asia, Eurasia</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>Influenza A (H3N2) Variant Virus, United States</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>Middle East Respiratory Syndrome (MERS), Arabian Peninsula</td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>Avian Influenza (H7N9), China</td>
<td></td>
</tr>
<tr>
<td>2015 and beyond??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Animal Species</td>
<td>Emerging Diseases</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>-------------------</td>
<td></td>
</tr>
<tr>
<td>Aquaculture</td>
<td>Viral hemorrhagic septicemia, Infectious salmon anemia, White spot disease (shrimp)</td>
<td></td>
</tr>
<tr>
<td>Dogs</td>
<td>Canine influenza, Nipah virus infection, Rift Valley fever, Leishmaniasis</td>
<td></td>
</tr>
<tr>
<td>Horses</td>
<td>West Nile encephalitis, Hendra virus infection</td>
<td></td>
</tr>
<tr>
<td>Poultry</td>
<td>High pathogenicity avian influenza, Newcastle disease</td>
<td></td>
</tr>
<tr>
<td>Swine</td>
<td>Porcine reproductive and respiratory syndrome virus, Porcine circovirus associated disease, Foot and mouth disease, African swine fever, Classical swine fever, Swine influenza, Nipah virus infection, Menangle virus infection, Reston Ebolavirus infection, Porcine Enteric Corona Viruses</td>
<td></td>
</tr>
<tr>
<td>Cats</td>
<td>High pathogenicity avian influenza (H5N1), Plague (Y. pestis), Rift Valley fever</td>
<td></td>
</tr>
<tr>
<td>Ruminants</td>
<td>Foot and mouth disease, Rift Valley fever, Brucellosis, Prion diseases (BSE, CWD, Scrapie), Bluetongue, Tuberculosis, bovine Schmallenberg</td>
<td></td>
</tr>
</tbody>
</table>
Factors contributing to continuing emergence/re-emergence of diseases

- Overpopulation
- Intensive animal agriculture
- Increased “backyard” animal production
- Wildlife/domestic animal/human interactions
 - Interspecies transfer of pathogens
- Environmental degradation
- Climate change
- Globalization
Growing Population

GROWING POPULATION

Between 1950 and 2010, the world population more than doubled, growing by 3.9 billion people. While actual growth is predicted to slow between 2010 and 2050, another 2.6 billion people are expected to be added to the world’s population. FAO estimates that 868 million people were undernourished in 2012.

In 2009, 49% of the population lived in cities. By 2050, 70% of the population is projected to live in cities.

Crowded urban environments, especially those without adequate infrastructure, can enhance disease epidemics such as influenza.

Source: United Nations Department of Economic and Social Affairs Division
Increased Food Animal Production

Veterinarians must play a major role in finding the balance between the needs for efficient food production, conservation of the environment, and animal welfare.

Source: FAO STAT faestat3.fao.org
World Hunger

- 2012: 868 million undernourished people
- 49.1 million people in the United States live in “Food-insecure households”
 - Includes 16.7 million children
 - 14.4% of all adults
- FAO: food production needs to increase 70% from 2005/07 to 2050
 - to feed projected 9.1 billion people
How much countries spend on food
Selected countries, 2012, as % of household expenditures

United States 6.6%
United Kingdom 9.1%
Canada 9.6%
Germany 10.9%
South Korea 12.2%
France 13.2%
Japan 13.8%
Italy 14.2%
Brazil 15.9%
Greece 16.5%
South Africa 19.4%
Turkey 22.2%
Mexico 24.9%
India 25.2%
Saudi Arabia 25.8%
China 26.9%
Russia 31.6%
Ukraine 37%
Nigeria 39.5%
Egypt 42.7%
Cameroon 45.9%
Pakistan 47.7%

Source: USDA, Economic Research Service
FAO: Food Production Needs to Increase 70% from 2005/07 to 2050

WORLD MEAT AND EGG PRODUCTION 1962 TO 2012

<table>
<thead>
<tr>
<th>Estimation</th>
<th>1962</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poultry</td>
<td>92,811,674</td>
<td>66,372,548</td>
</tr>
<tr>
<td></td>
<td>7,884,450</td>
<td>14,742,666</td>
</tr>
<tr>
<td>Eggs</td>
<td>63,228,582</td>
<td>29,203,329</td>
</tr>
<tr>
<td></td>
<td>109,122,021</td>
<td>26,055,873</td>
</tr>
</tbody>
</table>

Increased Food Animal Production
Veterinarians must play a major role in finding the balance between the needs for efficient food production, conservation of the environment, and animal welfare.
Source: FAO STAT faostat3.fao.org
Swine

Porcine reproductive and respiratory syndrome virus
Porcine circovirus associated disease
Foot and mouth disease
African swine fever
Classical swine fever
Swine influenza
Nipah virus infection
Menangle virus infection
Reston Ebolavirus infection
Porcine Enteric Corona Viruses
Porcine Epidemic Diarrhea Virus (PEDV)
Positive Biological Accessions
(estimated to have killed 8 million piglets)

First case April, 2013
4,458 Positive Biological Accessions by March 12, 2014

Source: AASV website www.aasv.org
Nipah Virus Outbreak

- 1998-1999, Malaysia
 - Respiratory and neurologic syndrome in swine
 - Encephalitis in humans
 - More than 250 cases
 - More than 100 deaths
 - Initially mistaken for Japanese encephalitis
 - Discovered new Paramyxovirus
Reservoir

- Flying foxes (fruit bats)
 - Carry the virus
 - Are not affected
 - Virus found in
 - Urine
 - Partially eaten fruit
 - Migratory
From Tambun, Nipah spread through infected pigs to farms in Penang, Perak, Selangor, Malacca, Negri Sembilan and Johor. Farmers in Tambun had "fire sales" to get rid of pigs.
Nipah Field Investigations - Malaysia
Nipah Virus

- Virus isolated in March 1999
- Quick national response with international assistance
- 1.1 million pigs culled (out of 2.4 million total)
- No new cases in Malaysia since 1999
Geographic distribution of Henipavirus outbreaks and fruit bats of Pteropodidae Family

The boundaries and names shown and the designations used on this map do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement.
Impact of Nipah Outbreak in SE Asia?

- Malaysia
 - 2.4 million pigs
- Cambodia
 - 21 million pigs
- Viet Nam
 - 27.3 million pigs
- Thailand
 - 9.7 million pigs
- Myanmar
 - 9.8 million pigs
World Farmed Fish and Beef Production, 1950 - 2012
Intensive Aquaculture

- Fastest-growing area of animal protein production
 - 47-50% of global aquatic food supply
 - China: 90% of aquatic animal food
 - 1950s: <1 million tons
 - 2012: >65 million tons
- Finfish, crustaceans, mollusks
- Can reduce pressure on wild fishery stocks
 - Can deplete wild fish used as feed for farmed fish
- Contagious diseases with high stocking densities
 - Can spread to wild fish
 - Sea lice, infectious salmon anemia (Chile), shrimp white spot disease (Asia)
Poultry

High pathogenicity avian influenza
Newcastle disease
H5N1 Avian Influenza

- 2004/5 – H5N1 emerged in Asia, killed millions of poultry and is zoonotic
- Concern that H5N1 would spread through migrating waterfowl from flyways in Europe/Asia to the Western hemisphere
- Extensive surveillance programs established in U.S.
- No detections of this strain of H5N1 in Western hemisphere
- New strains of H5 avian influenza detected in Canada and US fall 2014
 - Not zoonotic
Highly Pathogenic H5N2 Avian Influenza in Iowa

<table>
<thead>
<tr>
<th>Total Poultry Affected (5/18/2015)</th>
<th>25,680,221</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer</td>
<td>23,089,996</td>
</tr>
<tr>
<td>Pullet</td>
<td>1,603,896</td>
</tr>
<tr>
<td>Turkey</td>
<td>966,766</td>
</tr>
<tr>
<td>Hatchery</td>
<td>18,791</td>
</tr>
<tr>
<td>Backyard Chickens</td>
<td>747</td>
</tr>
<tr>
<td>Backyard Ducks</td>
<td>25</td>
</tr>
</tbody>
</table>

http://www.iowaagriculture.gov/AvianInfluenza.asp
Ruminants

Foot and mouth disease
Rift Valley fever
Brucellosis
Prion diseases
 BSE, CWD, Scrapie
Bluetongue
Tuberculosis, bovine
Schmallenberg
Foot and Mouth Disease (FMD): The MOST Contagious Disease of Animals

- Affects cloven hoofed animals
- FMD is the major animal disease preventing world trade of animals and animal products
- Mortality may be low but morbidity is high
- High mortality associated with some strains and some control methods
- Not a public health or food safety concern

UK
Korea
Japan
Egypt
Global Prevalence of FMDv

World Organization for Animal Health (OIE) has

- 178 member countries:
 - 96 countries are endemic ("have it") and have never been free of FMD
 - 66 countries free of FMD
 - 11 countries have free zones either with or without vaccination
 - 5 countries were free and recently suffered from a re-emergence of FMD

Leon, E. A. Transboundary and Emerging Diseases. 59 (Suppl. 1) pages 1-14, 2012
The United States has had Nine Outbreaks of FMD

1870, 1880 and 1884: Due to importation of infected animals. Since the development of a Federal system of inspection and quarantine of imported livestock, no outbreak has been attributed to admission of live animals.

1902, 1908, 1914, 1924 (two separate outbreaks) and 1929

All outbreaks were controlled by stop movement and stamping out
We must plan and be prepared to respond in new ways

“US livestock industries have changed dramatically since 1929”
Factors Requiring a Change in the Planned Response to FMD

- Very large herd sizes
- Extensive movement of animals
- Public resistance to stamping out
- Environmental concerns with carcass disposal
- Changes in OIE policies related to FMD free with vaccination status
Tools for Control of FMD

- Biosecurity
- Stop Movement
- Stamping Out
 - Slaughter of all clinically affected and in-contact susceptible animals (within 24 hours or as soon as possible)
- Trace back/Trace forward
 - 28 days prior to outbreak
- Rapid Diagnostics
- Vaccination
 - Vaccinate to kill/slaughter; Vaccinate to live
Tools for Control of FMD in a Large Outbreak

- Biosecurity
- Stop Movement
- Stamping Out
 - Slaughter of all clinically affected and in-contact susceptible animals (within 24 hours or as soon as possible)
- Trace back/Trace forward
 - 28 days prior to outbreak
- Rapid Diagnostics
- Vaccination
 - Vaccinate to kill/slaughter; Vaccinate to live
FMD Detection in the U.S.: Types of an FMD Outbreak

Six Types of FMD Outbreaks

- **Type 1:** Focal
- **Type 2:** Moderate Regional
- **Type 3:** Large Regional
- **Type 4:** Widespread or National
- **Type 5:** Catastrophic North American
- **Type 6:** Catastrophic U.S.

Response Shifts from Emphasis on Stamping-Out to Emphasis on Alternate Strategies (duration of FMD response)

Size of FMD Outbreak (in terms of animals, premises, and jurisdictions affected)
Prospects for the Emergence of New Diseases

- Emergence of new human and animal diseases is inevitable

- Human dependence on livestock, poultry and aquatic animals for food and livelihood
 - Limits policy options

- Protecting human and animal health and food production is essential
Dr. Norman Borlaug

Father of the Green Revolution

- 1940’s: developed disease-resistant, high-yield wheat
 - 1970 Nobel Peace Prize
 - Established World Food Prize
- This technology along with mechanized agriculture, fertilizers, irrigation
 - Increased crop yields and prevented famine in India and China
Norman Borlaug
Nobel Peace Prize, 1970

• “The green revolution has won a temporary success in man’s war against hunger which could provide sufficient food for humankind through the end of the 20th century.”

• “Unless the frightening power of human reproduction is curbed, the success of the Green Revolution will only be ephemeral.”
Norman Borlaug
Nobel Peace Prize, 1970

“Agricultural scientists have a moral obligation to warn the political, educational, and religious leaders about the magnitude and seriousness of the arable land, food, and population problems that lie ahead.”
Essential Elements to Avoid and Manage Biological Crises

One medicine, one world, one health approach to diseases

International collaboration
 - Lead by international organizations
 - Funded by developed world

Strengthen public health infrastructure and veterinary services in all nations

Government agency, private sector and university collaboration

Accelerate the application of modern science to improve diagnostics, vaccines, and anti-virals
 - Increase funding
 - Streamline regulatory hurdles

Population control
Questions or Comments?

jaroth@iastate.edu
Continuing Education Credit/Contact Hours for COCA Calls/Webinars

Continuing Education guidelines require that the attendance of all who participate in COCA Conference Calls be properly documented. All Continuing Education credits/contact hours (CME, CNE, CEU, CECH, ACPE and AAVSB/RACE) for COCA Conference Calls/Webinars are issued online through the CDC Training & Continuing Education Online system (http://www.cdc.gov/TCEOnline/).

Those who participate in the COCA Conference Calls and who wish to receive CE credit/contact hours and will complete the online evaluation by June 29, 2015 will use the course code WC2286. Those who wish to receive CE credits/contact hours and will complete the online evaluation between June 30, 2015 and May 27, 2016 will use course code WD2286. CE certificates can be printed immediately upon completion of your online evaluation. A cumulative transcript of all CDC/ATSDR CE’s obtained through the CDC Training & Continuing Education Online System will be maintained for each user.
Thank you for joining!
Please email us questions at coca@cdc.gov

Centers for Disease Control and Prevention
Atlanta, Georgia

http://emergency.cdc.gov/coca
Join Us on Facebook

CDC Facebook page for Health Partners! “Like” our page today to receive COCA updates, guidance, and situational awareness about preparing for and responding to public health emergencies.

CDC Health Partners Outreach
http://www.facebook.com/CDCHealthPartnersOutreach